An E-3B AWACS crashes outside Elmendorf Air Force Base, Alaska after multiple bird strikes to two of the four engines soon after takeoff; all 24 on board are killed.

A bird strikesometimes called birdstrike, bird ingestion (for an engine), bird hit, or bird aircraft strike hazard (BASH)is a collision between an airborne animal (usually a bird or bat) and a moving vehicle, usually an aircraft. The term is also used for bird deaths resulting from collisions with structures such as power lines, towers and wind turbines (see Birdskyscraper collisions and Towerkill).A significant threat to flight safety, bird strikes have caused a number of accidents with human casualties. There are over 13,000 bird strikes annually in the US alone. However, the number of major accidents involving civil aircraft is quite low and it has been estimated that there is only about 1 accident resulting in human death in one billion (109) flying hours. The majority of bird strikes (65%) cause little damage to the aircraft; however, the collision is usually fatal to the bird(s) involved.The Canada goose has been ranked as the third most hazardous wildlife species to aircraft (behind deer and vultures), with approximately 240 goose-aircraft collisions in the United States each year. 80% of all bird strikes go unreported.Most accidents occur when a bird (or birds) collides with the windscreen or is sucked into the engine of jet aircraft. These cause annual damages that have been estimated at $400 million within the United States alone and up to $1.2 billion to commercial aircraft worldwide. In addition to property damage, collisions between man-made structures and conveyances and birds is a contributing factor, among many others, to the worldwide decline of many avian species.The International Civil Aviation Organization (ICAO) received 65,139 bird strike reports for 201114, and the Federal Aviation Administration counted 177,269 wildlife strike reports on civil aircraft between 1990 and 2015, growing 38% in seven years from 2009 to 2015. Birds accounted for 97%.

The Boeing E-3 Sentry is an American airborne early warning and control (AEW&C) aircraft developed by Boeing. E-3s are commonly known as AWACS (Airborne Warning and Control System). Derived from the Boeing 707 airliner, it provides all-weather surveillance, command, control, and communications, and is used by the United States Air Force, NATO, French Air and Space Force, and Royal Saudi Air Force. The E-3 is distinguished by the distinctive rotating radar dome (rotodome) above the fuselage. Production ended in 1992 after 68 aircraft had been built.

In the mid-1960s, the U.S. Air Force (USAF) was seeking an aircraft to replace its piston-engined Lockheed EC-121 Warning Star, which had been in service for over a decade. After issuing preliminary development contracts to three companies, the USAF picked Boeing to construct two airframes to test Westinghouse Electric and Hughes's competing radars. Both radars used pulse-Doppler technology, with Westinghouse's design emerging as the contract winner. Testing on the first production E-3 began in October 1975.

The first USAF E-3 was delivered in March 1977, and during the next seven years, a total of 34 aircraft were manufactured. E-3s were also purchased by NATO (18), the United Kingdom (7), France (4) and Saudi Arabia (5).

In 1991, when the last aircraft had been delivered, E-3s participated in the Persian Gulf War, playing a crucial role of directing coalition aircraft against Iraqi forces. The aircraft's capabilities have been maintained and enhanced through numerous upgrades. In 1996, Westinghouse Electric's Defense & Electronic Systems division was acquired by Northrop Corporation, before being renamed Northrop Grumman Mission Systems, which currently supports the E-3's radar.